Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bao-Hua Chen,^a Yi-Zhi Li,^b Yong-Xiang Ma,^a* Xiao-Li Wu^a and Ping-Ren Li^a

 ^aNational Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China, and
^bCoordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.015 \text{ Å}$ R factor = 0.054 wR factor = 0.153 Data-to-parameter ratio = 16.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Bis[dicarbonyl(η^5 -cyclopentadienyl)ferrio]-(*N*,*N*-diisobutyldithiocarbamato)tin(II)

The title compound, $[{CpFe(CO)_2}_2Sn{S_2CN(C_4H_9-i)_2}_2]$ or $[SnFe_2(C_5H_5)_2(C_9H_{18}NS_2)_2(CO)_4]$, is obtained from the reaction of $[C_5H_5Fe(CO)_2]_2SnCl_2$ and potassium *N*,*N*-diisobutyl-dithiocarbamate in a mixed solvent (C_6H_6 -THF 1:1). The crystal structure shows that the Sn atom is situated on a twofold rotation axis. An Fe–Sn–Fe cluster is present in the complex, the Sn and Fe atoms having coordination numbers 4 and 8, respectively. There are non-conventional intramolecular C–H···S and C–H···N hydrogen bonds in the structure.

Received 17 March 2003 Accepted 28 March 2003 Online 9 April 2003

Comment

Because of its varied uses and strong coordinating ability, the dithiocarbamate ligand has attracted the attention of many investigators. Examples of its use are as a chelating agent in the treatment of metal poisoning (Tandon *et al.*, 1996) and as a lubricant additive (Tanaka *et al.*, 1996). The dithiocarbamate group can coordinate in either monodentate or bidentate mode (Johnson *et al.*, 1969), the latter being much more common. In the present study, we have synthesized a new organotin–iron complex by the reaction of potassium N,N-diisobutyldithiocarbamate with dichlorobis[dicarbonyl(η^5 -cyclopentadienyl)iron]tin and report its crystal structure here.

In the title complex, $[CpFe(CO)_2]_2Sn[S_2CN(C_4H_9-i)_2]_2$, (I), the Sn atom is situated on a twofold rotation axis. The coordination number of the Sn atom is four and that of the Fe atoms is eight. The Sn atom adopts a distorted tetrahedral configuration, the range of angles around Sn being 71.57 (9)– 129.01 (6)°. The Sn—S distance is 2.577 (2) Å and the Sn—Fe distance is 2.5568 (14) Å. The C1—S1 and C1=S2 distances (Fig. 1) are 1.738 (7) and 1.682 (7) Å, respectively, indicating localization of the single and double bonds. A search of the Cambridge Structural Database (Allen, 2002) for the *N*,*N*diisobutyldithiocarbamate ligand coordinated to any metal yielded only five hits. Of these, only one involved monodentate coordination, *viz*. bis(diisobutyldithiocarbamato)-

Figure 1

The molecular structure of the title compound. Ellipsoids are drawn at the 50% probability level. Atoms labelled with the suffix A are symmetryrelated to those with no suffix.

bis(dimethylphenylphosphine)platinum(II) (Lin et al., 1978). In the crystal structure, there are three non-conventional hydrogen bonds. Details are reported in Table 1.

Experimental

To $[C_5H_5Fe(CO)_2]_2SnCl_2$ (54 g, 1 mmol) and potassium N,N-diisobutyldithiocarbamate (2.1 mmol) were added 20 ml of mixed solvent (C_6H_6 -THF 1:1). The mixture was stirred for *ca* 6 h under an argon atmosphere at room temperature, and the reaction was followed by thin-layer chromatography. The resulting KCl was filtered off, the remainder washed with a small amount of benzene and the filtrate was concentrated under reduced pressure at 318 K, until the volume was about 5 ml. An equivalent volume of petroleum ether was added. The solid product was collected in a Büchner funnel, washed with diethyl ether and petroleum ether, then recrystallized from benzene and dried under vacuum.

Crystal data

$[SnFe_2(C_5H_5)_2(C_9H_{18}NS_2)_2(CO)_4]$	$D_x = 1.482 \text{ Mg m}^{-3}$
$M_r = 881.34$	Mo $K\alpha$ radiation
Monoclinic, C2/c	Cell parameters from 25
a = 21.800 (4) Å	reflections
b = 11.587(2) Å	$\theta = 2.0 - 17.5^{\circ}$
c = 16.886 (3) Å	$\mu = 1.60 \text{ mm}^{-1}$
$\beta = 112.17 (3)^{\circ}$	T = 293 (2) K
$V = 3950.0 (15) \text{ Å}^3$	Block, black
Z = 4	$0.3 \times 0.2 \times 0.2 \text{ mm}$
Data collection	
Bruker P4 diffractometer	$R_{\rm int} = 0.063$
ω scans	$\theta_{\rm max} = 25.0^{\circ}$
Absorption correction: multi-scan	$h = -25 \rightarrow 24$
(XPREP in SHELXTL; Bruker,	$k = 0 \rightarrow 13$
2000)	$l = 0 \rightarrow 20$
$T_{\min} = 0.69, \ T_{\max} = 0.72$	3 standard reflections
6972 measured reflections	every 97 reflections
3488 independent reflections	frequency: 25 min
2132 reflections with $I > 2\sigma(I)$	intensity decay: none

The crystal packing, viewed down the b axis.

Refinement

	(1, 2) $(2, 2)$ $(2, 2)$
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.07P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.054$	+ 1.66P]
$vR(F^2) = 0.153$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
3488 reflections	$\Delta \rho_{\rm max} = 0.78 \ {\rm e} \ {\rm \AA}^{-3}$
208 parameters	$\Delta \rho_{\rm min} = -0.96 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2-H2B\cdots$ S1	0.97	2.49	3.009 (8)	114
$C6-H6A\cdots S2$	0.97	2.63	3.026 (9)	105
$C8-H8C\cdots N1$	0.96	2.50	2.960 (13)	109

All H atoms were positioned geometrically and refined isotropically, using a riding model. The C-H distances range from 0.96 to 0.98 Å.

Data collection: XSCANS (Bruker, 2000); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 2000); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors are grateful to the NSF (QT program) of the PRC and to the Natural Science Foundation of Gansu Province of China (YS991-A25-001) for financial support.

References

- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Bruker (2000). XSCANS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA
- Johnson, B. F. G., Al-Obaidi, K. H. & McCleverty, J. A. (1969). J. Chem. Soc. A, pp. 1668-1670.
- Lin, I. J. B., Chen, H. W. & Fackler, J. P. Jr (1978). Inorg. Chem. 17, 394-401. Tanaka, N., Fukushima, A., Tasumi, Y., Morita, K. & Saito, Y. (1996). Eur. Pat. Appl. EP 727429; Chem. Abstr. 125, 236920.
- Tandon, S. K., Singh, S., Jain, V. K. & Prasad, S. (1996). Fund. Appl. Toxicol. **31**, 141-148.